Fiber to the 5G radio 

New opportunities for
broadband service providers

Fiber to the 5G radio 

New opportunities for
broadband service providers

5G transport over XGS-PON​

What impact will 5G have on your business?​


Mobile broadband traffic is increasing at a rapid rate. To meet the relentless demand, fifth generation (5G) mobile technologies are rolling out into the network as consumers simultaneously upgrade smartphones to take advantage of the increased speed and capacity. Mobile network radios are getting smaller and proliferating to every corner of the community. ​


For broadband service providers, the deployment of 5G mobile networks represents a tremendous opportunity to leverage the capacity of 10Gbps XGS-PON networks to diversify and grow revenue. Broadband service providers are in a unique position to share fiber access network infrastructure—often already existing in the locations where new 5G radios will be needed—to deliver a 10-fold increase in capacity at dramatically lower costs.  ​

Want to talk to a Calix network architect about the impact of 5G on your business?​


Why XGS-PON for 5G?

The proliferation of 5G small cells has an undesirable consequence of significantly increasing the transport costs of the Radio Access Network (RAN). As the number of radios increases, RAN transport costs grow and soon far exceed the cost of the mobile network radios.

Broadband network operators leveraging XGS-PON solutions can enable cost efficient 5G transport using the same field proven techniques that have made fiber to the home (FTTH) networks globally successful. ​

Point-to-Multipoint Economics​

Point-to-multipoint technologies – including mobile – dominate mass market communications networking because they are capital efficient for both electronics and fiber. XGS-PON, and its predecessor GPON, provide the lowest cost per fiber mile.

Passive Optical Network​

XGS-PON economic advantages build year over year because the passive outdoor equipment is unpowered and requires virtually no maintenance. XGS-PON is quickly becoming the next dominant PON technology. 

Trained Local Staff 

Because GPON and XGS-PON are widely deployed, service providers have trained staff available to design, deploy, and operate the needed 5G transport solution. The Calix Services team is available at every step to make you successful.


Connect 5G radios where no XGS-PON OLT has gone before

Deliver next generation PON services to every subscriber and 5G radio leveraging the Calix everyPON strategy with the Calix e-Series portfolio. Read more about how Calix customers are benefiting from the everyPON strategy. 


Want to learn more about 5G transport solutions using Calix Intelligent Access EDGE systems?


Frequently Asked Questions about 5G transport over 10G PON (FAQ)​


Is IEEE 1588 Precision Time Protocol (PTP) required for 5G transport over XGS-PON?

While not strictly required, IEEE 1588v2 is rapidly becoming a defacto requirement for all 5G networks. 5G Time Division Duplex (TDD) radios require a highly precise timing reference in order for radios and handsets to efficiently share spectrum and aggregate channels. While this timing reference can be obtained from Global Navigational Satellite Systems (GNSS) like the US government’s Global Positioning System (GPS) and the European Union’s Galileo system, many mobile network operators have used IEEE 1588 to distribute network timing for many years and now consider it mandatory for deployment of a resilient mobile network.


What is a 1588v2 Boundary Clock?

An IEEE 1588v2 Boundary Clock can act as a source (primary) and a destination (client) for synchronization messages. In a PON system, the OLT and ONT work together to form a Distributed Boundary Clock. This enhancement to the boundary clock function is required to correct timing errors that arise due to the inherent asynchronous operation of the PON (i.e., the packet delay upstream is greater than packet delay downstream). A 1588v2 Ordinary or Transparent Clock are not sufficient for packet based timing over XGS-PON.


Do the Calix Intelligent Access Systems support an IEEE 1588v2 Distributed Boundary Clock?

Yes. The E9-2 Intelligent Access EDGE and E7-2 Intelligent Modular System support 1588v2 Distributed Boundary Clocks with accuracy to support 5G TDD radio operation. 


What types of 5G networks are best suited for XGS-PON transport?

The economics of XGS-PON are best suited to transport small cells deployed in high number within a small geographic area. While 5G radios operating on any wavelength spectrum could work, small cells are most often used with 5G mid-band (e.g., C-band) and high-band (e.g., mmwave) spectrum where spectrum re-use is critical and/or high attenuation mandates short distances between radios.